Intelligent Agents Individual E-Portfolio Report

Student name: Mariam Almarzooqi

Contents

Introduction and Module OVerviewcooiuiiiiiiiiiiiiiiiii e 3
Agent Based Computing and Architectureooooiuiiiiiiiiiiiiiiii e e 3
Team Collaboration and Communication SKillsc..ooiiiiieene 4
Development of the Digital Forensics Agent Systemc.ocoveiiiiiiiiiiiiiiiiiiiniiiiiieieenennen. 4
Technical Challenges and Problem Solvingc..ooooiiiiiiiiiiiiiiiii 6
Testing and Validation.............ooouiiiiiiiiii ettt e e e e e ennen 7
Learning Outcomes and Skill Developmentc.cooiiiiiiiiiiiii 8
Reflection on the Development Process.............couuiuiiiiiiiiiiiiiiiiiieee e e e e 9
Application to Real-World Contexts..............ccooiiiiiiiiiiiiiiiiiiiii e, 10
Future Improvements and Research Directions..............c..coooiiiiiiiiiiiiiiiiiiiiiieeeeaeans 11
CONCIUSIONenniiiiiii ettt et et et e e st e e et ean s eneaneenenen 12
RE@IEMCEScueiiiiiiiiii ittt aas 12

Introduction and Module Overview

Intelligent Agents digital e-portfolio (hosted at: https://mariamalmarzoogiessex.github.io/portfolio/Intelligent.html)

Through this intelligent agent module, | have experienced important personal and
professional growth while working on practical applications of agent based systems. The
journey starts with basic concepts of agent architectures and improve through the
collaborative discussions, team projects and ended in an individual project that shows the
real world applicability of intelligent agent principles. This reflective report shows my
learning journey, focusing particularly on the Digital Forensics Agent System that | have
developed, the challenges | faced, the skills | acquired and how these experiences have
shaped my understanding of intelligent systems.

The module introduced me to various agent architectures which includes simple reactive
agents to complex BDI systems and provided the opportunities to apply these concepts
through development work. Each unit built based on previous knowledge which creating
a complete understanding of how intelligent agents can solve the real world problems.
The discussions helped me connect with partners on theoretical concepts while the team
and individual projects allowed me to implement theory into practice.

Agent Based Computing and Architecture

When | first encountered agent based computing in Unit 1, the concepts seems abstract
and disconnected from practical applications. | understood that agents were autonomous
software entities that could see their environment and act upon it, but | struggled to
visualize how this would work in the real systems. The early discussions about agent
characteristics like autonomy, reactivity, proactiveness and social ability were interesting
theoretically, but | needed experience to truly understand their significance.

As | progressed through Units 2 and 3, learning about first order logic and various agent
architectures, | start to see patterns and connections. The study of reactive architectures
showed me that how agents could respond to environmental without complex reasoning,
while architectures shows goal based behavior through planning and reasoning. The BDI
architecture particularly helped me because it shows human decision-making processes
through viewpoint about the world which representing goals and intentions as committed
the plans of action.

The breakthrough came in Unit 4 when we explored hybrid architectures that combined
reactive and deliberative components. This made complete sense for practical
applications because real-world systems often need both quick reactive responses and
thoughtful deliberative planning.

https://mariamalmarzooqiessex.github.io/portfolio/Intelligent.html
https://mariamalmarzooqiessex.github.io/portfolio/Intelligent.html

Team Collaboration and Communication Skills

Working as part of Team was an helpfull experience that taught me lessons extending far
beyond technical knowledge. Our team which consisted of myself, Majed Alzaabi and
Koulthoum Hassan Flamerzi. From the beginning, we established clear communication
channels and created a team contract that define our responsibilities and meeting
schedules.

The collaborative discussions on agent based systems and agent communication
languages shows the different perspectives and interpretations. During the first
discussion about agent based systems, | learned to articulate my understanding clearly
while remaining open to alternative viewpoints from my peers. Reading and responding
to posts from Ali Alhammadi and Koulthoum Flamerzi challenged me to think more about
the assumptions representing different agent architectures.

In Unit 5 and 6, we focused on agent communication, learning about speech act theory,
KQML and KIF. The exercise of creating agent dialogues between Alice and Bob in
warehouse management helped me understand how agents exchange information and
coordinate actions. | developed dialogues showing how agents can ask questions,
provide information and negotiate using structured communication protocols.

The team throughout the project were generally stayed positive even though we faced
challenges. One challenge was coordinating schedules across different time zones and
personal commitments. We addressed this by being flexible with meeting times and using
common communication tools effectively. Another challenge was make suring equal
participation in discussions, as some team members were naturally more vocal than
others.

Development of the Digital Forensics Agent System

The individual project to develop the digital forensics agent system became the important
point of my learning experience in this module. This project required me to apply
everything | had learned about agent architectures, communication and intelligent system
design to solve a real problem in digital forensics. The forensics field needs automation
because manual evidence collection is time taking, contains error and difficult to examine
for legal proceedings.

| chose to implement a BDI based multi-agent architecture for multiple reasons. First,
forensic investigation is goal based with clear objectives like finding all files of certain
types or verifying evidence integrity. Second, forensic agents need beliefs about the
current state of the file system and evidence database. Third, agents must form intentions
about which actions to execute based on their goals and current situation. The BDI model
provided a natural framework for organizing this complexity.

4

The system architecture improved through several iterations. Initially, | considered a
simpler design where a single program handled all tasks sequentially. However, this
approach lacked the scalability and failed to take advantage of concurrent processing.
Then we designed a multi agent system with four specialized agents working together.
The Orchestrator Agent helps with overall execution and manages the other three agents.
The Discovery Agent scans file systems to find potential evidence files based on
configurable criteria. The Processing Agent extracts metadata and calculates
cryptographic hashes for evidence integrity. The Packaging Agent creates the encrypted
evidence packages with multiple report formats.

Orchestrator
= Loads policy
= Coordinates
Monitoring

Packaging
Agent
> * CSVIISON
= Encrypt
= Custody

Discovery
Agent
*Scan FS
« Filters

= Enqueue

Processing
Agent
* SHA-256
= Metadata
= Store DB

Figure 1: DFAS Multi-Agent Architecture showing the Orchestrator coordinating
Discovery, Processing and Packaging agents through queue based communication

The communication between agents uses the python queues which provide thread safe
message passing. When the Discovery Agent finds a file matching our criteria, it places
the file path into a queue. The Processing Agent monitors this queue, retrieves file paths,
and performs its work. This producer consumer pattern allows the agents to work at their
own pace without blocking each other. If discovery runs faster than processing, the queue
buffers the work. If processing is faster, it waits without wasting CPU resources.

| implemented a streaming approach that reads the files in 4 kilobyte blocks by updating
the hash incrementally. This allows the system to process files of any size without
consuming the available memory.

File type detection presented another interesting challenge. Initially, | relied on file
extensions to determine file types, but this approach is fundamentally insecure because
users can easily rename files. An attacker could hide evidence by changing suspicious
file extensions to innocuous ones. | implemented libmagic integration, which examines
file headers and content to determine actual file types regardless of extension. This
required handling cases where libmagic is unavailable, so | created a fallback chain: try

libmagic first, then Python's mimetypes module, and finally a hardcoded extension
mapping as a last resort.

| used sqlite because it stores the complete database in a single file, making evidence
packages portable and easy to manage. The schema includes an evidence records table
storing all file metadata and a chain of custody table documenting every action taken
during collection. Each chain of custody entry includes who performed the action, when
it occurred, and what changed. The entries are linked through cryptographic hashes,
making tampering detectable.

Creating the Packaging Agent involved learning about encryption and evidence
packaging standards. Digital forensics requires that evidence packages remain tamper-
evident and maintain integrity. | implemented AES-GCM encryption, which provides both
confidentiality and authentication. The authentication tag allows anyone with the
decryption key to verify that the package has not been modified since creation. The agent
exports evidence in multiple formats including CSV for human review in Excel, JSON for
programmatic access by other tools, and the original SQLite database for complex
queries and analysis.

Technical Challenges and Problem Solving

Developing DFAS presented the numerous technical challenges that required research,
experimentation and creative problem solving. These challenges taught me important
lessons about software engineering, error handling and the gap between theoretical
designs and practical implementations.

Cross platform compatibility proved more difficult than expected. My development
environment was windows, but | wanted the system to work on linux and macos as well.
File paths, permissions and ownership work differently across operating systems. File
ownership on Windows involves security identifiers while Unix uses numeric user IDs. |
addressed these issues using python pathlib module which abstracts platform differences
and by writing platform specific code wrapped in conditionals that check the operating
system.

Performance optimization became important when testing with larger datasets.
Processing files took long when dealing with hundreds of files. The queue based multi-
agent design naturally supports the concurrent processing because discovery and
processing happen together. While the Discovery Agent scans directories, the Processing
Agent works on files already in the queue. This pipelining dramatically improved
throughput. In my testing, the system processed seventeen files in approximately three
seconds, which extrapolates to over 300 files per minute for similar-sized files.

Memory management required careful attention when processing large files. My initial
implementation read entire files into memory to calculate hashes, which worked fine for
small documents but failed catastrophically with large video files or disk images. |
implemented streaming reads that process files in small chunks, updating the hash
incrementally. This change reduced memory usage from potentially gigabytes to a
constant few kilobytes regardless of file size.

By implementing libmagic integration that examines actual file content, the system detects
true file types even when extensions are misleading. Testing this functionality involved
creating files with mismatched extensions and verifying that libmagic correctly identified
them.

Testing and Validation

2025-10-14 ©1:19:02,879 - __main__ - - Processing complete. Processed 17 files
2025-10-14 ©01:19:02,880 - __main _ - - Agent Processing stopped
2025-10-14 01:19:02,880 i - Collection complete

- Agent Discovery stopped

- Processing complete. Processed 17 files
- Agent Processing stopped

- Collection complete

- __main__ - INFO - Agent Discovery stopped

2025-10-14 ©1:19:02,879 - __main__ - INFO - Processing complete. Processed 17 files

2025-10-14 01:19:02,880 - __main__ - INFO - Agent Processing stopped

2025-10-14 01:19:02,880 - __main__ - INFO - Collection complete
2025-10-14 ©1:19:02,867 - __main _ - INFO - Agent Discovery stopped
2025-10-14 01:19:02,879 - __main__ - INFO - Processing complete. Processed 17 files

_main__ - INFO - Agent Processing stopped

_main__ - INFO - Agent Discovery stopped

2025-10-14 ©1:19:02,880 -
2025-10-14 ©1:19:02,867 - _
2025-10-14 01:19:02,879 - __main__ - INFO - Processing complete. Processed 17 files
2025-10-14 91:19:02,879 - __main__ - INFO - Processing complete. Processed 17 files
2025-10-14 01:19:02,880 - __main__ - INFO - Agent Processing stopped

2025-10-14 ©1:19:02,880 - __main__ - INFO - Collection complete

Case ID: a7a9e: 53 5 a

Evidence Database: evidence a7a9eada-e533-47ac-8656-b65f5eacldea.db

Evidence Package: evidence packages\evidence package a7a9eada-e533-47ac-8656-b65f5eacldea 20251014 011902.zip
Collection completed at: 2025-10-14 01:19:02.882807

Figure 2: Console output showing successful processing of 17 files with complete agent
lifecycle from discovery through packaging

Complete testing was important to make sure the system reliability for forensic
applications where accuracy and auditability are top. | developed a test suite covering all
major system components using python unit test framework. The test execution results
showed twelve tests across five test classes with all tests passing successfully.

Testing the database manager involved verifying that tables were created correctly with
suitable schemas and that evidence records could be inserted and retrieved accurately.
These tests used temporary database files that were created for each test and deleted
afterward, and make suring the test isolation. The tests confirmed that the database

7

initialization created both the evidence records table and the chain of custody table with
correct column definitions.

The Processing Agent tests focused on the core forensic functionality. The SHA 256
calculation test created a file with known content, calculated its hash and compared the
result against a expected value. This test also verified hash consistency by calculating
the hash multiple times and ensuring identical results. The file type detection test created
files with various extensions and verified that the system correctly identified their types.
The metadata extraction test confirmed that the system captured all required metadata
including timestamps, file size, and ownership information.

The Packaging Agent tests validated report generation and package creation. The CSV
export test confirmed that evidence records were correctly formatted in comma-separated
values with appropriate headers. The JSON export test verified that the data structure
was valid JSON and contained all expected fields. The package creation test confirmed
that the ZIP file was created, contained all necessary components, and that a chain of
custody entry was recorded documenting the package creation.

—| dfas 10/14/2025 1:19 AM Text Document 8 KB
“%| evidence_a7a9eada-e533-47ac-8656-b65f5eact... 10/14/2025 1:19 AM Data Base File 28 KB
i, evidence package a7a9eada-e533-47ac-8656-.. 10/14/2025 1:19 AM Compressed (zipped)... 8 KB
@ evidence_report_a7a9eada-e533-47ac-8656-b6... 10/14/2025 1:19 AM Microsoft Excel Com... 8 KB
| evidence_report_a7a9eada-e533-47ac-8656-b6... 10/14/2025 1:19 AM JSON Source File 13 KB

Figure 3: Evidence package contents including database, CSV/JSON reports, and
encrypted ZIP package

The integration test validated the complete workflow from start to finish. This test created
a temporary directory with multiple files, initialized all agents, ran the complete collection
process, and verified that all files were discovered, processed, and packaged correctly.
The test confirmed that the evidence database contained the expected number of records
and that all generated files existed with non-zero sizes.

Learning Outcomes and Skill Development

This module transformed my understanding of intelligent systems from abstract theory to
practical implementation. Several key learning outcomes stand out as particularly
significant for my professional development.

My understanding of agent architectures deepened substantially through practical
application. Initially, | could define reactive, deliberative, and hybrid architectures in
theoretical terms, but implementing a BDI-inspired system revealed nuances and trade-

8

offs that theory alone cannot convey. | learned that the BDI model provides excellent
structure for goal-oriented systems but requires careful design to avoid performance
bottlenecks when belief sets grow large or when reasoning about complex goals.

Technical skills and problem solving abilities improved through hands-on development.
My Python programming ability strengthened particularly in areas like concurrent
programming with threads and queues, database interactions using SQLite,
cryptographic operations with the cryptography library, and file system operations with
pathlib. These are practical skills directly applicable to future projects in various domains
beyond forensics.

Understanding of standards and compliance grew through research and implementation.
Digital forensics operates under strict legal and regulatory frameworks. | learned about
ISO 27037 guidelines for evidence handling, NIST SP 800-86 forensic techniques, and
ACPO principles for digital evidence. Implementing a system that complies with these
standards taught me the importance of documentation, audit trails, and cryptographic
integrity verification in regulated domains.

Communication skills improved through collaborative discussions and presenting
technical work. Explaining agent concepts to peers in discussion forums required
translating technical jargon into clear explanations.These communication skills
complement technical abilities and are essential for professional success.

Reflection on the Development Process

Looking back on the entire development process, | recognize both successes and areas
where | could have performed better. Understanding these aspects helps me plan for
improvement in future projects.

The phased development approach worked well. | started with the simplest component,
the database manager, and validated it thoroughly before moving to more complex
agents. Each agent was developed and tested independently before integration. This
incremental approach allowed me to catch and fix issues early when they were easier to
debug. If | had attempted to build everything simultaneously, tracking down bugs would
have been far more difficult.

Documentation could have been more comprehensive throughout development. While
the final code includes detailed comments and the README file provides good user
documentation, | did not maintain detailed design documents during development. In
several instances, | made architectural decisions that seemed obvious at the time but
later required significant mental effort to remember the reasoning behind them. For future
projects, | will maintain a design journal documenting major decisions and the rationale
behind them.

9

Time management was generally effective but imperfect. | created a development timeline
with milestones for each major component. This plan kept the project on track overall, but
| underestimated the time required for testing and documentation. The actual coding took
less time than expected while testing and documentation took more. In retrospect, |
should have allocated more time for these crucial but less exciting aspects of software
development.

The testing strategy proved its value repeatedly. Each time | added significant new
functionality, running the test suite caught regression bugs where new code broke
previously working features. Without automated testing, these bugs might have gone
unnoticed until much later when they would have been harder to diagnose and fix. This
experience convinced me of the importance of automated testing for any substantial
software project.

Error handling improved throughout development as | encountered various failure modes.
Early versions of the code assumed ideal conditions and crashed when facing
unexpected situations like missing files or invalid permissions. As | tested more thoroughly
and encountered these edge cases, | added defensive checks and graceful error
handling. The final version rarely crashes, instead logging errors and continuing with
remaining work. This robustness is essential for forensic tools that must work reliably
even when examining damaged or suspicious systems.

Application to Real-World Contexts

The Digital Forensics Agent System addresses genuine needs in the digital forensics
field. Currently, many forensic investigators manually collect evidence, which is slow,
prone to human error, and difficult to audit. Automated collection tools exist but are often
expensive commercial products or specialized tools that lack flexibility. DFAS
demonstrates that intelligent agent principles can create flexible, auditable, and
standards-compliant forensic collection systems.

The multi-agent architecture provides advantages over monolithic tools. Each agent
specializes in a specific forensic task, making the system easier to understand, maintain,
and extend. If new requirements emerge, such as integrating with specific forensic
analysis tools or adding support for cloud storage evidence collection, developers can
modify or extend individual agents without rewriting the entire system. This modularity is
valuable for tools that must evolve to meet changing needs.

The configurable policy-based approach allows investigators to adapt the system to
different investigation scenarios without modifying code. The YAML configuration file
specifies what to collect, where to look, and what to exclude. An investigator can create
multiple configuration profiles for different investigation types, such as fraud investigations

10

focused on financial documents or intellectual property theft investigations focused on
source code and emails. This flexibility makes the tool more widely applicable than hard-
coded collection tools.

The emphasis on standards compliance and audit trails addresses legal requirements for
digital evidence. Courts require establishing chain of custody showing that evidence has
not been tampered with from collection through presentation. The cryptographic hashing
at multiple levels provides mathematical proof of integrity. The chain of custody table
documents every action taken during collection. The encrypted packaging prevents
unauthorized modification. These features make evidence collected with DFAS more
likely to be admissible in legal proceedings.

Beyond digital forensics, the architectural patterns and implementation techniques from
DFAS apply to other domains requiring automated data collection and processing.
Environmental monitoring systems could use similar agent architectures where discovery
agents find sensor data, processing agents validate and aggregate measurements, and
packaging agents create reports for environmental agencies. Compliance auditing
systems could use analogous designs where agents collect configuration data from IT
systems, analyze compliance against policies, and generate audit reports. The
fundamental pattern of specialized agents coordinating through message passing has
broad applicability.

Future Improvements and Research Directions

While DFAS successfully demonstrates intelligent agent principles applied to digital
forensics, numerous opportunities exist for enhancement and extension. Identifying these
opportunities helps me understand the current system's limitations and plan future
learning.

Advanced file analysis could integrate additional forensic techniques. Currently, the
system calculates hashes and extracts basic metadata, but forensic investigations often
require deeper analysis. Integrating YARA rule scanning would allow detecting known
malware patterns or indicators of compromise. Entropy analysis could identify encrypted
or compressed data that might contain hidden evidence. Optical character recognition
could extract text from images and scanned documents. These capabilities would make
the system more powerful for complex investigations.

Machine learning integration could increase the evidence prioritization. Not all collected
files are equally relevant to an investigation. Training classifiers to score files based on
relevance could help investigators focus on the most promising evidence first. For
example, in a fraud investigation, financial documents would score higher than vacation

11

photos. Implementing this would require collecting training data and experimenting with
various classification algorithms.

Conclusion

This Intelligent Agents module has been a transformative learning experience that
connected theoretical concepts with practical application. The journey from understanding
basic agent properties to implementing a functional multi-agent forensic system
demonstrated both the power of intelligent agent principles and the challenges of real-
world software development.

The Digital Forensics Agent System successfully applies BDI based architecture to solve
genuine problems in evidence collection. The specialized agents working together
through queue-based communication create a system that is performant, maintainable,
and extensible. The emphasis on standards compliance, cryptographic integrity, and audit
trails makes the tool potentially valuable for actual forensic work while demonstrating key
concepts from the module.

The most important lesson from this experience is that intelligent agent principles are not
merely academic abstractions but powerful tools for building real systems that solve
complex problems. By carefully choosing appropriate architectures, designing clean
communication protocols, handling errors gracefully, and maintaining focus on user
needs, we can create intelligent systems that are both theoretically sound and practically
useful. This insight will guide my future work in technology, whatever specific form that
work takes.

References
1. Association of Chief Police Officers (2012) ACPO Good Practice Guide for Digital
Evidence. Available at: https://www.digital-detective.net/digital-forensics-

documents/ACPO_Good Practice Guide for Digital Evidence v5.pdf (Accessed:
14 October 2025).

2. Bratman, M.E. (1987) Intention, Plans, and Practical Reason. Cambridge, MA:
Harvard University Press.

3. International Organization for Standardization (2012) ISO/IEC 27037:2012
Information technology — Security techniques — Guidelines for identification,
collection, acquisition and preservation of digital evidence. Geneva: 1SO.

4. International Organization for Standardization (2015) ISO/IEC 27042:2015
Information technology — Security techniques — Guidelines for the analysis and
interpretation of digital evidence. Geneva: ISO.

5. National Institute of Standards and Technology (2015) FIPS PUB 180-4: Secure Hash
Standard (SHS). Gaithersburg, MD: U.S. Department of Commerce. Available at:

12

https://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf
https://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf

13

https://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf (Accessed: 14 October

2025).

Polleres, A. (2007) 'From SPARQL to rules (and back)', in Williamson, C.L., Zurko,
M.E., Patel-Schneider, P.F. and Shenoy, P.J. (eds.) Proceedings of the 16th
International Conference on World Wide Web. New York: ACM, pp. 787-796.

Searle, J.R. (1969) Speech Acts: An Essay in the Philosophy of Language.
Cambridge: Cambridge University Press.

The University of Edinburgh (no date) Reflection Toolkit. Available at:
https://www.ed.ac.uk/reflection/reflectors-toolkit (Accessed: 14 October 2025).

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.ed.ac.uk/reflection/reflectors-toolkit

