
1

Intelligent Agents Individual E-Portfolio Report

Student name: Mariam Almarzooqi

2

Contents
Introduction and Module Overview ... 3

Agent Based Computing and Architecture .. 3

Team Collaboration and Communication Skills .. 4

Development of the Digital Forensics Agent System ... 4

Technical Challenges and Problem Solving ... 6

Testing and Validation ... 7

Learning Outcomes and Skill Development .. 8

Reflection on the Development Process ... 9

Application to Real-World Contexts ... 10

Future Improvements and Research Directions ... 11

Conclusion ... 12

References .. 12

3

Through this intelligent agent module, I have experienced important personal and

professional growth while working on practical applications of agent based systems. The

journey starts with basic concepts of agent architectures and improve through the

collaborative discussions, team projects and ended in an individual project that shows the

real world applicability of intelligent agent principles. This reflective report shows my

learning journey, focusing particularly on the Digital Forensics Agent System that I have

developed, the challenges I faced, the skills I acquired and how these experiences have

shaped my understanding of intelligent systems.

The module introduced me to various agent architectures which includes simple reactive

agents to complex BDI systems and provided the opportunities to apply these concepts

through development work. Each unit built based on previous knowledge which creating

a complete understanding of how intelligent agents can solve the real world problems.

The discussions helped me connect with partners on theoretical concepts while the team

and individual projects allowed me to implement theory into practice.

Agent Based Computing and Architecture

When I first encountered agent based computing in Unit 1, the concepts seems abstract

and disconnected from practical applications. I understood that agents were autonomous

software entities that could see their environment and act upon it, but I struggled to

visualize how this would work in the real systems. The early discussions about agent

characteristics like autonomy, reactivity, proactiveness and social ability were interesting

theoretically, but I needed experience to truly understand their significance.

As I progressed through Units 2 and 3, learning about first order logic and various agent

architectures, I start to see patterns and connections. The study of reactive architectures

showed me that how agents could respond to environmental without complex reasoning,

while architectures shows goal based behavior through planning and reasoning. The BDI

architecture particularly helped me because it shows human decision-making processes

through viewpoint about the world which representing goals and intentions as committed

the plans of action.

The breakthrough came in Unit 4 when we explored hybrid architectures that combined

reactive and deliberative components. This made complete sense for practical

applications because real-world systems often need both quick reactive responses and

thoughtful deliberative planning.

Introduction and Module Overview

Intelligent Agents digital e-portfolio (hosted at: https://mariamalmarzooqiessex.github.io/portfolio/Intelligent.html)

https://mariamalmarzooqiessex.github.io/portfolio/Intelligent.html
https://mariamalmarzooqiessex.github.io/portfolio/Intelligent.html

4

Team Collaboration and Communication Skills

Working as part of Team was an helpfull experience that taught me lessons extending far

beyond technical knowledge. Our team which consisted of myself, Majed Alzaabi and

Koulthoum Hassan Flamerzi. From the beginning, we established clear communication

channels and created a team contract that define our responsibilities and meeting

schedules.

The collaborative discussions on agent based systems and agent communication

languages shows the different perspectives and interpretations. During the first

discussion about agent based systems, I learned to articulate my understanding clearly

while remaining open to alternative viewpoints from my peers. Reading and responding

to posts from Ali Alhammadi and Koulthoum Flamerzi challenged me to think more about

the assumptions representing different agent architectures.

In Unit 5 and 6, we focused on agent communication, learning about speech act theory,

KQML and KIF. The exercise of creating agent dialogues between Alice and Bob in

warehouse management helped me understand how agents exchange information and

coordinate actions. I developed dialogues showing how agents can ask questions,

provide information and negotiate using structured communication protocols.

The team throughout the project were generally stayed positive even though we faced

challenges. One challenge was coordinating schedules across different time zones and

personal commitments. We addressed this by being flexible with meeting times and using

common communication tools effectively. Another challenge was make suring equal

participation in discussions, as some team members were naturally more vocal than

others.

Development of the Digital Forensics Agent System

The individual project to develop the digital forensics agent system became the important

point of my learning experience in this module. This project required me to apply

everything I had learned about agent architectures, communication and intelligent system

design to solve a real problem in digital forensics. The forensics field needs automation

because manual evidence collection is time taking, contains error and difficult to examine

for legal proceedings.

I chose to implement a BDI based multi-agent architecture for multiple reasons. First,

forensic investigation is goal based with clear objectives like finding all files of certain

types or verifying evidence integrity. Second, forensic agents need beliefs about the

current state of the file system and evidence database. Third, agents must form intentions

about which actions to execute based on their goals and current situation. The BDI model

provided a natural framework for organizing this complexity.

5

The system architecture improved through several iterations. Initially, I considered a

simpler design where a single program handled all tasks sequentially. However, this

approach lacked the scalability and failed to take advantage of concurrent processing.

Then we designed a multi agent system with four specialized agents working together.

The Orchestrator Agent helps with overall execution and manages the other three agents.

The Discovery Agent scans file systems to find potential evidence files based on

configurable criteria. The Processing Agent extracts metadata and calculates

cryptographic hashes for evidence integrity. The Packaging Agent creates the encrypted

evidence packages with multiple report formats.

Figure 1: DFAS Multi-Agent Architecture showing the Orchestrator coordinating

Discovery, Processing and Packaging agents through queue based communication

The communication between agents uses the python queues which provide thread safe

message passing. When the Discovery Agent finds a file matching our criteria, it places

the file path into a queue. The Processing Agent monitors this queue, retrieves file paths,

and performs its work. This producer consumer pattern allows the agents to work at their

own pace without blocking each other. If discovery runs faster than processing, the queue

buffers the work. If processing is faster, it waits without wasting CPU resources.

I implemented a streaming approach that reads the files in 4 kilobyte blocks by updating

the hash incrementally. This allows the system to process files of any size without

consuming the available memory.

File type detection presented another interesting challenge. Initially, I relied on file

extensions to determine file types, but this approach is fundamentally insecure because

users can easily rename files. An attacker could hide evidence by changing suspicious

file extensions to innocuous ones. I implemented libmagic integration, which examines

file headers and content to determine actual file types regardless of extension. This

required handling cases where libmagic is unavailable, so I created a fallback chain: try

6

libmagic first, then Python's mimetypes module, and finally a hardcoded extension

mapping as a last resort.

I used sqlite because it stores the complete database in a single file, making evidence

packages portable and easy to manage. The schema includes an evidence records table

storing all file metadata and a chain of custody table documenting every action taken

during collection. Each chain of custody entry includes who performed the action, when

it occurred, and what changed. The entries are linked through cryptographic hashes,

making tampering detectable.

Creating the Packaging Agent involved learning about encryption and evidence

packaging standards. Digital forensics requires that evidence packages remain tamper-

evident and maintain integrity. I implemented AES-GCM encryption, which provides both

confidentiality and authentication. The authentication tag allows anyone with the

decryption key to verify that the package has not been modified since creation. The agent

exports evidence in multiple formats including CSV for human review in Excel, JSON for

programmatic access by other tools, and the original SQLite database for complex

queries and analysis.

Technical Challenges and Problem Solving

Developing DFAS presented the numerous technical challenges that required research,

experimentation and creative problem solving. These challenges taught me important

lessons about software engineering, error handling and the gap between theoretical

designs and practical implementations.

Cross platform compatibility proved more difficult than expected. My development

environment was windows, but I wanted the system to work on linux and macos as well.

File paths, permissions and ownership work differently across operating systems. File

ownership on Windows involves security identifiers while Unix uses numeric user IDs. I

addressed these issues using python pathlib module which abstracts platform differences

and by writing platform specific code wrapped in conditionals that check the operating

system.

Performance optimization became important when testing with larger datasets.

Processing files took long when dealing with hundreds of files. The queue based multi-

agent design naturally supports the concurrent processing because discovery and

processing happen together. While the Discovery Agent scans directories, the Processing

Agent works on files already in the queue. This pipelining dramatically improved

throughput. In my testing, the system processed seventeen files in approximately three

seconds, which extrapolates to over 300 files per minute for similar-sized files.

7

Memory management required careful attention when processing large files. My initial

implementation read entire files into memory to calculate hashes, which worked fine for

small documents but failed catastrophically with large video files or disk images. I

implemented streaming reads that process files in small chunks, updating the hash

incrementally. This change reduced memory usage from potentially gigabytes to a

constant few kilobytes regardless of file size.

By implementing libmagic integration that examines actual file content, the system detects

true file types even when extensions are misleading. Testing this functionality involved

creating files with mismatched extensions and verifying that libmagic correctly identified

them.

Testing and Validation

Figure 2: Console output showing successful processing of 17 files with complete agent
lifecycle from discovery through packaging

Complete testing was important to make sure the system reliability for forensic

applications where accuracy and auditability are top. I developed a test suite covering all

major system components using python unit test framework. The test execution results

showed twelve tests across five test classes with all tests passing successfully.

Testing the database manager involved verifying that tables were created correctly with

suitable schemas and that evidence records could be inserted and retrieved accurately.

These tests used temporary database files that were created for each test and deleted

afterward, and make suring the test isolation. The tests confirmed that the database

8

initialization created both the evidence records table and the chain of custody table with

correct column definitions.

The Processing Agent tests focused on the core forensic functionality. The SHA 256

calculation test created a file with known content, calculated its hash and compared the

result against a expected value. This test also verified hash consistency by calculating

the hash multiple times and ensuring identical results. The file type detection test created

files with various extensions and verified that the system correctly identified their types.

The metadata extraction test confirmed that the system captured all required metadata

including timestamps, file size, and ownership information.

The Packaging Agent tests validated report generation and package creation. The CSV

export test confirmed that evidence records were correctly formatted in comma-separated

values with appropriate headers. The JSON export test verified that the data structure

was valid JSON and contained all expected fields. The package creation test confirmed

that the ZIP file was created, contained all necessary components, and that a chain of

custody entry was recorded documenting the package creation.

Figure 3: Evidence package contents including database, CSV/JSON reports, and

encrypted ZIP package

The integration test validated the complete workflow from start to finish. This test created

a temporary directory with multiple files, initialized all agents, ran the complete collection

process, and verified that all files were discovered, processed, and packaged correctly.

The test confirmed that the evidence database contained the expected number of records

and that all generated files existed with non-zero sizes.

Learning Outcomes and Skill Development

This module transformed my understanding of intelligent systems from abstract theory to

practical implementation. Several key learning outcomes stand out as particularly

significant for my professional development.

My understanding of agent architectures deepened substantially through practical

application. Initially, I could define reactive, deliberative, and hybrid architectures in

theoretical terms, but implementing a BDI-inspired system revealed nuances and trade-

9

offs that theory alone cannot convey. I learned that the BDI model provides excellent

structure for goal-oriented systems but requires careful design to avoid performance

bottlenecks when belief sets grow large or when reasoning about complex goals.

Technical skills and problem solving abilities improved through hands-on development.

My Python programming ability strengthened particularly in areas like concurrent

programming with threads and queues, database interactions using SQLite,

cryptographic operations with the cryptography library, and file system operations with

pathlib. These are practical skills directly applicable to future projects in various domains

beyond forensics.

Understanding of standards and compliance grew through research and implementation.

Digital forensics operates under strict legal and regulatory frameworks. I learned about

ISO 27037 guidelines for evidence handling, NIST SP 800-86 forensic techniques, and

ACPO principles for digital evidence. Implementing a system that complies with these

standards taught me the importance of documentation, audit trails, and cryptographic

integrity verification in regulated domains.

Communication skills improved through collaborative discussions and presenting

technical work. Explaining agent concepts to peers in discussion forums required

translating technical jargon into clear explanations.These communication skills

complement technical abilities and are essential for professional success.

Reflection on the Development Process

Looking back on the entire development process, I recognize both successes and areas

where I could have performed better. Understanding these aspects helps me plan for

improvement in future projects.

The phased development approach worked well. I started with the simplest component,

the database manager, and validated it thoroughly before moving to more complex

agents. Each agent was developed and tested independently before integration. This

incremental approach allowed me to catch and fix issues early when they were easier to

debug. If I had attempted to build everything simultaneously, tracking down bugs would

have been far more difficult.

Documentation could have been more comprehensive throughout development. While

the final code includes detailed comments and the README file provides good user

documentation, I did not maintain detailed design documents during development. In

several instances, I made architectural decisions that seemed obvious at the time but

later required significant mental effort to remember the reasoning behind them. For future

projects, I will maintain a design journal documenting major decisions and the rationale

behind them.

10

Time management was generally effective but imperfect. I created a development timeline

with milestones for each major component. This plan kept the project on track overall, but

I underestimated the time required for testing and documentation. The actual coding took

less time than expected while testing and documentation took more. In retrospect, I

should have allocated more time for these crucial but less exciting aspects of software

development.

The testing strategy proved its value repeatedly. Each time I added significant new

functionality, running the test suite caught regression bugs where new code broke

previously working features. Without automated testing, these bugs might have gone

unnoticed until much later when they would have been harder to diagnose and fix. This

experience convinced me of the importance of automated testing for any substantial

software project.

Error handling improved throughout development as I encountered various failure modes.

Early versions of the code assumed ideal conditions and crashed when facing

unexpected situations like missing files or invalid permissions. As I tested more thoroughly

and encountered these edge cases, I added defensive checks and graceful error

handling. The final version rarely crashes, instead logging errors and continuing with

remaining work. This robustness is essential for forensic tools that must work reliably

even when examining damaged or suspicious systems.

Application to Real-World Contexts

The Digital Forensics Agent System addresses genuine needs in the digital forensics

field. Currently, many forensic investigators manually collect evidence, which is slow,

prone to human error, and difficult to audit. Automated collection tools exist but are often

expensive commercial products or specialized tools that lack flexibility. DFAS

demonstrates that intelligent agent principles can create flexible, auditable, and

standards-compliant forensic collection systems.

The multi-agent architecture provides advantages over monolithic tools. Each agent

specializes in a specific forensic task, making the system easier to understand, maintain,

and extend. If new requirements emerge, such as integrating with specific forensic

analysis tools or adding support for cloud storage evidence collection, developers can

modify or extend individual agents without rewriting the entire system. This modularity is

valuable for tools that must evolve to meet changing needs.

The configurable policy-based approach allows investigators to adapt the system to

different investigation scenarios without modifying code. The YAML configuration file

specifies what to collect, where to look, and what to exclude. An investigator can create

multiple configuration profiles for different investigation types, such as fraud investigations

11

focused on financial documents or intellectual property theft investigations focused on

source code and emails. This flexibility makes the tool more widely applicable than hard-

coded collection tools.

The emphasis on standards compliance and audit trails addresses legal requirements for

digital evidence. Courts require establishing chain of custody showing that evidence has

not been tampered with from collection through presentation. The cryptographic hashing

at multiple levels provides mathematical proof of integrity. The chain of custody table

documents every action taken during collection. The encrypted packaging prevents

unauthorized modification. These features make evidence collected with DFAS more

likely to be admissible in legal proceedings.

Beyond digital forensics, the architectural patterns and implementation techniques from

DFAS apply to other domains requiring automated data collection and processing.

Environmental monitoring systems could use similar agent architectures where discovery

agents find sensor data, processing agents validate and aggregate measurements, and

packaging agents create reports for environmental agencies. Compliance auditing

systems could use analogous designs where agents collect configuration data from IT

systems, analyze compliance against policies, and generate audit reports. The

fundamental pattern of specialized agents coordinating through message passing has

broad applicability.

Future Improvements and Research Directions

While DFAS successfully demonstrates intelligent agent principles applied to digital

forensics, numerous opportunities exist for enhancement and extension. Identifying these

opportunities helps me understand the current system's limitations and plan future

learning.

Advanced file analysis could integrate additional forensic techniques. Currently, the

system calculates hashes and extracts basic metadata, but forensic investigations often

require deeper analysis. Integrating YARA rule scanning would allow detecting known

malware patterns or indicators of compromise. Entropy analysis could identify encrypted

or compressed data that might contain hidden evidence. Optical character recognition

could extract text from images and scanned documents. These capabilities would make

the system more powerful for complex investigations.

Machine learning integration could increase the evidence prioritization. Not all collected

files are equally relevant to an investigation. Training classifiers to score files based on

relevance could help investigators focus on the most promising evidence first. For

example, in a fraud investigation, financial documents would score higher than vacation

12

photos. Implementing this would require collecting training data and experimenting with

various classification algorithms.

Conclusion

This Intelligent Agents module has been a transformative learning experience that

connected theoretical concepts with practical application. The journey from understanding

basic agent properties to implementing a functional multi-agent forensic system

demonstrated both the power of intelligent agent principles and the challenges of real-

world software development.

The Digital Forensics Agent System successfully applies BDI based architecture to solve

genuine problems in evidence collection. The specialized agents working together

through queue-based communication create a system that is performant, maintainable,

and extensible. The emphasis on standards compliance, cryptographic integrity, and audit

trails makes the tool potentially valuable for actual forensic work while demonstrating key

concepts from the module.

The most important lesson from this experience is that intelligent agent principles are not

merely academic abstractions but powerful tools for building real systems that solve

complex problems. By carefully choosing appropriate architectures, designing clean

communication protocols, handling errors gracefully, and maintaining focus on user

needs, we can create intelligent systems that are both theoretically sound and practically

useful. This insight will guide my future work in technology, whatever specific form that

work takes.

References

1. Association of Chief Police Officers (2012) ACPO Good Practice Guide for Digital

Evidence. Available at: https://www.digital-detective.net/digital-forensics-

documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf (Accessed:

14 October 2025).

2. Bratman, M.E. (1987) Intention, Plans, and Practical Reason. Cambridge, MA:

Harvard University Press.

3. International Organization for Standardization (2012) ISO/IEC 27037:2012

Information technology — Security techniques — Guidelines for identification,

collection, acquisition and preservation of digital evidence. Geneva: ISO.

4. International Organization for Standardization (2015) ISO/IEC 27042:2015

Information technology — Security techniques — Guidelines for the analysis and

interpretation of digital evidence. Geneva: ISO.

5. National Institute of Standards and Technology (2015) FIPS PUB 180-4: Secure Hash

Standard (SHS). Gaithersburg, MD: U.S. Department of Commerce. Available at:

https://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf
https://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf

13

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf (Accessed: 14 October

2025).

6. Polleres, A. (2007) 'From SPARQL to rules (and back)', in Williamson, C.L., Zurko,

M.E., Patel-Schneider, P.F. and Shenoy, P.J. (eds.) Proceedings of the 16th

International Conference on World Wide Web. New York: ACM, pp. 787-796.

7. Searle, J.R. (1969) Speech Acts: An Essay in the Philosophy of Language.

Cambridge: Cambridge University Press.

8. The University of Edinburgh (no date) Reflection Toolkit. Available at:

https://www.ed.ac.uk/reflection/reflectors-toolkit (Accessed: 14 October 2025).

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.ed.ac.uk/reflection/reflectors-toolkit

